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Vertical motion of a floating sphere in a 
sine-wave sea 

By RICHARD BARAKAT 
Optics Department, Itek Laboratories, Lexington, Mass. 

(Received 9 November 1961 and in revised form 27 March 1962) 

The vertical motion (heave) of a freely floating sphere is studied under the action 
of incident sine waves. Forced heave is defined as the vertical motion of sphere in 
still water, while free heave is defined as the vertical motion of sphere in the sine- 
wave sea. The total velocity potential describing the motion is decomposed into 
three terms: incident wave potential, diffracted wave potential (potential as if 
the sphere were fixed in sine-wave sea), and forced heave potential (potential as if 
the sphere were in forced vertical motion in still water). The forced heave and 
diffraction problems are solved separately. The linearized equation of motion is 
then used to effect the synthesis of the free motion via two unknowns : amplitude 
of vertical displacement and phase difference. 

Both the radiation and diffraction problems are solved by expansions of non- 
orthogonal functions (wave-free potentials). These functions are trivial solutions 
of the Sommerfeld radiation condition in the sense that they attenuate faster than 
O(r-4) and it is necessary to add multipole terms which have the proper behaviour 
at infinity. Infinite systems of linear equations are obtained for the unknown 
expansion coefficients and the unknown source strengths of the multipole. The 
added mass, damping coefficient and wave-making coefficient in forced heave are 
studied as well as the force on the fixed sphere. In  addition the added mass and 
damping coefficient in free heave are obtained. 

The horizontal motion (surge) of the freely floating sphere can be obtained by 
methods similar to those employed for the vertical motion. The author is 
presently working on this problem. Surge and heave are not independent motions 
but can be treated separately because of the symmetry of the sphere. 

1. Introduction 
The rigorous solution of the motions of a freely floating rigid body in surface 

waves is an extremely difficult one. At present, theoretical attempts are based 
upon the linearized equations of motion of a perfect fluid. Even after this simpli- 
fication one is still left with a complex problem. 

At this point two alternatives are open: first, the use of some physical hypothesis 
to further simplify the problem, and secondly, an attempt to solve the problem 
rigorously (for some simple body). Let us take the first alternative and examine 
its implications. Most attempts to determine the motions have employed the 
Froude-Krylov hypothesis which states that at each point of the immersed 
surface of the rigid body the same pressure acts as would occur if the body were 
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not there, the reaction of the rigid body upon the seaway being neglected. Instead 
of attempting the solution of a complicated hydrodynamic problem, the Froude- 
Krylov hypothesis circumvents this by assuming that the effect of the waves upon 
the object is contained in two empirical terms involving the amplitude 11 of the 
response of the object. For heaving motion they are (u)  Md2y/dt2, where M is a 
constant called the added mass; and ( b )  Ndyldt, where N is a constant called the 
damping factor. These two ‘constants ’ are determined experimentally by forced 
oscillation of the rigid body in calm water; a further assumption being that these 
‘ constants ’ are independent of the frequency of oscillation. Finally, the forcing 
function is taken as the pressure due to the incident wave as if the vessel were not 
there. The resultant second-order differential equation is then solved. 

Those familiar with diffraction theory will notice the similarity between the 
Froude-Hrylov hypothesis and Kirchhoff’s scalar theory of diffraction as regards 
the assumptions concerning the distortion of the incident wave field. This 
empirical method, although capable of powerful results, cannot by its very nature 
lead to a rational hydrodynamic theory of rigid body motion. 

The second alternative does not depend upon experimental data and yields 
solutions complete within themselves. There are two types of problems to be 
considered, radiation problems and diffraction problems. The radiation problems 
are concerned with the determination of the fluid motion produced by periodically 
forced oscillations of an object in the free surface. Ursell(1949, 1953, 1954, 1957) 
in a series of important papers has attacked and solved the two-dimensional 
problem of the forced periodic heaving of an infinitely long circular cylinder semi- 
immersed in the free surface, while Havelock (1955) has formally solved the 
three-dimensional problem of the forced periodic heaving of a semi-immersed 
sphere. In  the radiation problems considered by these investigators, the normal 
component of the velocity of the object is known a priori by virtue of specifying 
the heaving velocity. 

The second type of problem, the diffraction problem, is more complex. In  
diffraction problems we assume that the free surface of the fluid supports a two- 
dimensional monochromatic progressive wave, and we are required to compute 
the scattering of the incident wave upon the introduction of an obstacle (rigid or 
freely floating), while simultaneously determining the motion of the obstacle if it 
is freely floating. Only the steady-state case is considered. In  the case where 
there is a freely-floating object the problem becomes extremely difficult in that 
the normal component of the velocity of the object is not known but must be 
determined as part of the solution. 

The two-dimensional problems possess the peculiarity that the free surface 
boundary condition at  low heave frequency (/3 - 0) degenerates in such a manner 
that the problem becomes indeterminate. This indeterminateness is manifested 
by the occurrence of logarithmic terms in /3, as a consequence the added mass 
coefficient becomes infinite as /3 approach zero. In  contrast the three-dimensional 
problem is determinate at  p = 0. 

The simplest case of a three-dimensional situation is that of a floating sphere 
semi-immersed in the free surface and undergoing heave motion due to the 
resultant action of the incident sine waves. Our problem is to determine the 
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motion given only the geometry of the sphere and the wavelength of the incident 
wave under the tacit restriction to steady-state motions only. 

The sphere, being a highly degenerate geometric object, can be shown to have 
only two possible degrees of freedom in the linearized theory; they are vertical 
motion (heave) and horizontal motion (surge). It is a rigorous consequence of 
linearized theory that these two motions are uncoupled (John 1949) because of 
the symmetry of the sphere. This is the justification for treating heave only. The 
problem of surge can be treated by analogous methods and is presently being 
investigated by the author. 

For reasons to be shown in $3,  it  is necessary to solve both radiation (forced 
heave) and diffraction aspects of the problem. The final solution of the freely 
floating sphere is obtained by synthesis of the radiation and diffraction problems 
through the equation of motion. 

The present paper is based in part on a condensed version of an internal report 
(Barakat 1960) which contains the detailed analysis and numerical results. This 
report is available to interested readers. 

In  a future paper the author will discuss the vertical motion of a floating sphere 
in a stochastic seaway. 

2. Formulation of the problem 
The linearized theory depends upon obtaining the potential function for the 

description of the motion. The potential function $(r,  8,@, t )  is harmonic in the 
interior of the fluid and satisfies certain boundary conditions. Taking $(r,  8, $, t )  
to be harmonically varying in time, we have 

$(r ,  8,q5, t )  = Re [W(r ,  8, q5) 
W ( r ,  8, y5) satisfies 

(A) V2W = 0 (in fluid), 

(B) 
aw + k, W = 0 (on free surface) k, = w2/g, 

( C )  W, = V, (on immersed surface or sphere), 

where V, is the normal velocity of the sphere. If the sphere were in forced motion 
it would be possible to specify V,; however, when a sphere is freely floating we 
cannot specify V, but must obtain it as part of the complete solution. We also 
demand the derivatives of W with respect to x be bounded and converge to zero as 
z approaches infinity. 

There is still another condition which must be specified at  infinity; namely, that 
the scattered or radiated waves (W,) behave as outgoing progressive waves. This 
restriction upon W2(r, 8, $) is the radiation condition of Sommerfeld which 
requires that (see John 1950) 

(D) lim r*[aK/ar-ikW,] = 0 

uniformly in r and 6 with fixed positive constant k. We can look upon this con- 
straint as the assertion that we exclude the superposition of free waves upon the 
waves generated by the interaction of the incident waves and the obstacle. John 

r+m 
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(1950) has shown by an energy conservation argument that the wave motion due 
to a finite obstacle should decay as 

O[(x2+y2)--f] = O(r-*), 

as r tends to infinity along the free surface. This argument is equivalent to the 
statement that the wave function W, which satisfies the Sommerfeld radiation 
condition must attenuate as O(r-g). The wave-free potentials (tj 4) attenuate 
faster than O(r-*), in fact at  least as O ( r 2 ) .  They simply attenuate too rapidly to 
transport energy to infinity at the required rute as demanded by the radiation 
condition. 

If we were to attack the problem as an initial value problem and allow the time 
to approach infinity, then one would need to impose only boundedness conditions 
a t  infinity. Although in principle the sphere could be handled in this manner, it 
must be confessed that a t  the present time this attack presents almost insur- 
mountable analysis. 

3. Method of solution 

semi-immersed sphere in the steady-state is given by (John 1949) 
The linearized equation of motion for the vertical displacement (heave) of a 

,r(gp+ l)roeic = -iW S,”n s,”” W(a,  0, 9) sin 0 cos 0 d 6 ,  (3.1) 
9 

where 7 is the vertical displacement of the sphere and 

7 ( 3 4  

where 8 is an unknown phase angle which is to be determined as part of the 
solution. The dimensionless parameter ,4 = k, a is essentially a Froude number. 

= e--iwt+is 
0 

We assume the total velocity potential W to be given by 

W = W i  + Wd+ W f  e+-ic, (3.3) 

where Wi = potential due to incident sine waves, W d  = potential due to scattered 
waves from sphere if it  were assumed rigid, and W f  = potential due to forced 
vertical motion of sphere. Now 

but by construction (or definition) 

leaving 

awi a w d  

ar ar 
-+- = 0 ( r=a) ,  (3.5) 

In  (3.6) V, is given. In  this manner we construct a velocity potential of the motion 
which satisfies the boundary conditions on the body and behaves properly at  
infinity. This decomposition is a generalization of the methods used by Ursell 
(1 949) in his solution of the forced heaving of a circular cylinder. 
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First we solve for the diffraction of water waves from a fixed sphere and add to 
it the motion due to the forced heaving of the sphere. The solution of these two 
problems yields two unknowns, the phase of the motion of the sphere and the 
amplitude of heave. We now use the linearized equation of heave (3.1) in order to 
compute these two quantities explicitly. 

4. Wave-free potentials 

surface condition and Laplace's equation in spherical co-ordinates : 
These are two combinations of basic eigenfunctions which satisfy the free 

These two particular combinations HE2 and NE2-l of non-orthogonal harmo- 
nic functions are termed wave-free potentials generalizing Havelock's definition 
(1955). The wave-free potentials represent local oscillations of the free surface in 
the immediate vicinity of the sphere which decay very rapidly as we move away 
from the sphere. Both of the wave-free potentials are O(r-2) or greater. These 
functions trivially satisfy the radiation condition which demands the functions 
decay as O(r-4); the wave-free potentials simply decay too rapidly at  infinity. 

5. Multipole terms 
Since the wave-free potentials are trivial solutions of the radiation condition, 

it is necessary to add a singular solution (of the appropriate multiplicity) of 
Laplace's equation which satisfies the free surface condition and behaves 
properly at  infinity. 

There are several methods available for the explicit calculation of the singu- 
larities; however, the method due to Ursell (1950) seems to be the most elegant 
and powerful at present. Using a variant of Ursell's method, Thorne (1953) has 
shown that the multipole source G of unit strength at  (0, 0,f) in in$niteZy deep 
water is given by 

+ 271.ik~+1e-IEo(z+ffJn(kor) cosm@, (5.1) 

where r2 = x2+y2, R2 = z2+r2  and n 2 m. The integral is taken as a Cauchy 
principal value integral. The path of integration is chosen such that the point 
(0, 0 , f )  acts only as a source. 

Whenf + 0 (multipole is situated below the mean free surface), the integral in 
(5.1) is regular at  r = 0. Therefore the singularity of G is contained in the first term 
involving the associated Legendre polynomial. This argument, however, is not 
correct when the multipole lies on the free surface,f = 0. In  this case the integral 
is not regular at  the origin. See equation (3) of Havelock (1955) for an expansion 
of the integral in (5.1) from which a proof of the above statements can be readily 
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deduced. It is not necessary to consider arbitrary (positive) n and m in (5.1), 
but only n = m for f = 0. Call the integral in (5.1) Fn and take the difference 
Fn+, - ktFn; it  is simple to prove that this difference contains a singularity. In  
this manner the entire hierachy of singularities can be generated. It is thus 
necessary to consider only the special case n = m in evaluating (5.1) rather than 
dealing with an arbitrary n and m where n 2 m. Consequently the double infinity 
of values (m, n) is reduced to the single infinity of values (n). 

The author has proved that the multipole G can be written as 

G(a, 0,O) = [Gjn)(a, 0) + iGJn)(a, 0)] cos nq5, (5.2) 

and GJn) = 2 ~ ~ k ; + ~  e-pcosO J,(P sin 13). (5.4) 

Here K , ( x )  is the Struve function of order ( -n) .  Since the rather intricate 
analysis required to obtain (5.2) is not germane to the paper we omit it. Full 
details may be found in the author's internal report or in a forthcoming paper 
devoted to  the evaluation of the three-dimensional multipole. 

In  the important case when n = 0 (point source) the above expressions 
reduce to  

aG,(a,#) = 2-7$e-pcosB [Ho(/3sin#)+Yo(/3sin0)] 

- BPe-/cose rl(t2+tan")te'pcOsedt, (5.5) 

and 
J o  

a,G2(a, 0) = 2n/3e-~coSe Jo(/?sin 0). 

The integral in the multipole becomes infinite as 0 approaches zero; therefore, 
a different approach, described in Appendix I of the internal report, is necessary 
for this case. 

Only the point source (n = 0 )  is needed for the discussion of the forced heaving 
part of the problem; however, the diffraction problem requires the general 
multipole (n + 0) .  

6. Forced heave problem-formal solutionJf 
We take as the forced heave potential 

m 

W f  = 3 a2%+'(A' n +iB;)M&2(p)+ (S,+iiY,) (G,+iG,), (6.1) 
n= 1 

where S, + iS2 is the complex source strength, and G, + iG, is the velocity potential 
of the point source. The function 1MLz is the wave-free potential defined in 8 4. 
Since the motion is symmetrical with respect to $ only terms involving m = 0 

t This section is essentially equivalent to Havelock's work (1955) as regards the 
evaluation of the expansion coefficients and source strengths. 

35 Fluid Mech. 13 
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are needed, consequently the anti-symmetric wave-free potential Ni2-l  does not 
enter in the forced heave problem. The point source G is included because W f  
must act as an outgoing progressive wave and hence satisfy the radiation condi- 
tion. It should be emphasized that the expansion of W f  into an infinite series of 
the wave-free potentials alone is not complete and every attempt to compute the 
expansion coefficients will lead to different values simply because the expansion 
of a function into an incomplete set is not unique. When /3 = 0 the expansion 
(6.1) reduces to a Legendre polynomial expansion which is complete, We can 
look upon (6.1) as a generalization of the Legendre expansion. 

The unknowns are the expansion coeEcients A;, €I; (n = 1, . . . ,a) and the 
source strengths S,, 8,. All the unknowns are functions of /3. Our problem is to 
determine these unknowns. 

The forced potential W f  has dimensions of L2T-1 so that S has dimensions 
L2T-l and W s  has L-l. The unknowns A; and BQ are not dimensionless but have 
the dimensions of a velocity LT-1. 

W 

- X [(zn + 1) P2n(p) +L?Gn-l(~)l  a2(A; + iB;)* (6.2) 
n= 1 

It is understood that r is to be equated to a. Let 7' = 7; e-iwt represent the forced 
vertical motion, then the kinematic boundary condition becomes 

a 2 a W f p  = io&a2P1(p) (r=a).  (6.3) 

Dividing both sides of (6.3) by - wy; and separating real and imaginary parts, 
we find 

where 

The unknowns a,, B2, A,, Bn (m = 1, . . ., m) are now dimensionless. 
The basic equations (6.4) and (6.5) can be solved by using Rayleigh's integral to 

generate a linear system of equations where the number of variables and equations 
is infinite. By truncating the infinite system we can obtain approximate answers, 
the degree of approximation depending upon the accuracy required. 

Multiply both sides of (6.4) and (6.5) by 

(6.6) 
Po@) when j = 0, 

(Zj+1)P2~(p)+/3p,j_,(p) when j = l ,Z , . . . ,m ,  

and integrate over p from 0 to 1. Use of Rayleigh's integral 
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will generate one equation with an infinite number of A, or B, for each value 
of j. 

The set of equations obtained by the indicated integration of (6.4) and (6.5) is 
truncated to include the first four A, and B,. Thus there are 10 inhomogeneous 
equations in 10 unknowns : B,, B2, A,, A,, A,, A,, B,, B,, B,, B4.t There is, of 
course, one 10 x 10 system for each specified value of p. 

As is common in diffraction problems the infinite system of coefficient equations 
is easily solved only in the low-frequency region (p < 3). In  the intermediate 
frequency region (3  < ,13 < 10) the system of equations becomes progressively 
more ill-conditioned as p increases and a large number of coefficients must be 
taken into account. However, in the high-frequency region (p > 10) one can use 
the asymptotic properties of the source term G which results in a considerable 
simplification in the structure of the equations, in that one of the coefficients is of 
an order of magnitude larger than the others. We can show directly from the 
infinite equation system that as p -+ 03, 

B, N O(p- l ) ,  B,,, N O(p-2), A, - O(pP)  (n = 1,2,  ...), (6.8) 

0 

P 
FIGURE 1. The real and imaginary parts of the complex source strength for forced heave. 

provided that g,, g2 N 0(/3--2), which will be so, since the source term G vanishes 
for large p. This is consistent with the solution a t  p = co where the free surface 
boundary condition becomes 

W = 0 (at x = 0). (6-9) 

The source strengths $, and 8, are computed using a 10 x 10 system and are 
shown in figure 1. The fact that 8, does not vanish at p = 0 is the reason why the 
added mass coefficient Kf (see 3 7) does not vanish at  /3 = 0. The calculations have 
been carried out to /3 = 3 (the low-frequency region); however, it  is essential that 
computations be carried out to a t  least p = 10 in order to answer certain questions 

t The explicit form of the simultaneous equations is given in the internal report. 

35-2 
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pertaining to the asymptotic behaviour of the added mass and damping coef- 
ficient. Calculations in this frequency range are in progress. 

This work is for infinite depth; the author has also considered this problem for 
finite depth. The result will be reported in the near future. 

7. Added mass, damping, and wave-making coefficients 

of interest . 
We now pass to a detailed consideration of a number of dynamical quantities 

The steady-state vertical force on the sphere is 

where F f  = F $ c i d .  The forced heave potential wf is given by (6.1) and the 
integration is at  r = a since the integral is over the immersed surface of the sphere. 
Instead of Pi, we use the dimensionless force 

Here L,(P) = In'" (aG,) sin 0 cos 8d0; L2(P) = s,"" (aG,) sin 8 cos 8d0. (7.5) 

Trivial calculations show that the vertical force component Zf is 7~ radians out 
of phase with the acceleration, while 2; is in phase with the vertical velocity. 
Following UrseIl(l949, 1957) and Havelock (1955) we introduce the added mass 
coefficient K, and the damping coefficient H, which are directly related to Z,f and 
Zi. Define 

force component 7~ radians out of phase with acceleration 
acceleration x mass of displaced fluid 

force component in phase with vertical velocity 
acceleration x mass of displaced fluid 

K, = Y 

H, = ' 

Then K f  = - 32:; H, = 3Z{. (7.6) 

The computed values of Kf and Hf are shown in figures 2 and 3. Our values are 
in fair agreement with those of Havelock (1955) for /3 < 0.8, although above these 
values the values are somewhat different. The discrepancy is partly due to our 
using a 10 x 10 system rather than his 8 x 8 system as well as his use of power- 
series expansions for the evaluation of the source term rather than numerical 
quadrature. 

At /3 = 0 there is a discrepancy between the behaviour of Kf as obtained by 
Havelock and by the author. According to Havelock (see figure 1 of his paper), 
K, has infinite positive slope at /3 = 0, and hence the values of K, at /3 = 0.1, 0.2 



Vertical motion of a JEoating sphere 549 

are greater than Kf(0) = 0.8305.t In contrast to Havelock's result the slope of 
Kf is now negative infinite with a limiting value of Kf(0)  = 0.8309. In  fact it  can 
be shown that the slope is proportional to logp so that the effect of the infinite 
slope is confined to a very small region around ,8 = 0. It would seem from an 
examination of Havelock's diagram that the slope of Kf behaves at  least as p-l 

I I I I I 

0 1 .o 2.0 
03 '  

P 
0 

FI~URE 2. The added mass coefficient Kf in forced heave a.s a function of P. 

o'2 1 

0 

P 
FIGURE 3. The damping coefficient Hf in forced heave a8 a function of P. 

at ,8 N 0. An examination of the numerical values of a2 and B, (the two largest 
numerical terms) at  ,8 = 0 and ,4 = 0.1 shows that both functions are numerically 
smaller at  /3 = 0.1. It is fairly simple to show that K j ( 0 )  > Kf(,8) for (0 < ,8 < 0.1)' 
and in turn Kf(O*l) > Kf(0.2),  etc. The results of Havelock are probably due to a 
mistake in numerical computations. 

The high-frequency asymptotics of K f  and Hf have a very simple structure. 
As we remarked in 3 6 only B, is O(P-l) all other coefficients and source strengths 
being O(p-z)). Thus directly from (7.3)' (7.4) and (7.6) we have 

K f  - + + O(p-l); f4 - O(@-')). (7.7) 
-t The original value given by Havelock, Kf = 0.828 is incorrect. A recomputation 

using his values of the source strengths and expansion coefficients yields the above value. 
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Actually Ursell (1957) has stated (although no proof is given)t that the high- 
frequency asymptotic forms are 

27 ..., Hf N - ATf w &--+ . 3 

4P4+ . . * *  16B 
Unfortunately these results do not bridge the gap between the computations 
which a t  present only go up to /3 = 3. Therefore it is imperative to carry the 
numerical computations to /3 = 10 at which point it is believed that the asymp- 
totic series (7.8) and the numerical results should join smoothly. For example, 
K,  at P = 3.0 is 0.3772 (numerical computation) and 0-4375 (asymptotic expan- 
sion) so that the discrepancy is not small enough to neglect. 

Unlike the two-dimensional problem studied by Ursell the added mass 
coefficient is finite at  p = 0 and p = 00. The behaviour of li, is rather com- 
plicated in the low-frequency region where it varies by approximately a factor of 
two and then asymptotically approaches its limiting value of 0.5. The damping 
coefficient also undergoes an unusually complicated behaviour in the low- 
frequency region before rapidly decaying to its limiting value zero. Now Hf 
vanishes at  the two extremes p = 0 and /3 = 00, as of course it must as these two 
degenerate boundary conditions preclude wave propagation. 

The standing waves (represented by the wave-free potentials) in the im- 
mediate vicinity of the sphere interacting with the sphere are the direct cause of 
the added mass. This is the reason why attempts utilizing only sources to deter- 
mine the added mass are incomplete, although they are successful in predicting 
the damping coefficient which is directly related to the transport of energy to 
infinity by diverging progressive waves. 

In  the high-frequency region very little energy is propagated to infinity and 
most of the wave motion is in the form of standing waves in the vicinity of the 
sphere. These standing waves are not very sensitive to p and we would expect 
that the added mass coefficient would be slowly varying. In  this respect the high- 
frequency approximation to the free surface-boundary condition (i.e W = 0 at 
z = 0) is probably a very good engineering approximation in the sense that the 
added mass coefficient varies so slowly that its frequency dependence may be 
neglected to first order and the added mass now becomes a function only of the 
geometry of the body rather than a function of both geometry and frequency as 
in the more rigorous theory. 

The wave amplitude 5 at the mean free surface is given by 

(7.9) 

Using (8.3) and recalling that Pzn-.l(0) = 0 we find 

where the source terms are evaluated at  p = 0. 

correspondence. 
t Dr Ursell has kindly furnished the author with an outline of the proof in some private 
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Both rl and r2 are highly oscillatory functions. Instead of studying them 
directly we introduce a smooth function which we call the wave-making coefficient 

V ( p )  = amplitude of wave height at r = a = [I?!+ I?E]*. (7.11) 

(This is not the same function which Ursell terms the wave-making coefficient in 
his two-dimensional studies.) The calculations are summarized in figure 4. The 

(7.12) 

0 

P 
FIGURE 4. The wave-making coefficient in forced heave. 

8. Diffraction problem 
We now pass to the diffraction problem. The boundary condition (C) of $ 2  is 

used to determine the diffracted wave potential Wd in terms of Wi. The incident 
wave potential in spherical co-ordinates is 

(8.1) 
gcJ Wi(r,  8, q5) = - exp ( - k, r cos 0) exp (ik, r sin 0 cos q5). 
w 

The diffracted wave potential is to be expanded in the series 

m +E (SP)+iXkn)) (aG$n)+iaGJn)) cosnq5. (8.2) 

The functions MEE and NE2-l are the wave-free potentials defined in $4. The 
unknown expansion coefficients C z ,  -02, ET, LZ are dimensionless, as are the 
source strengths Sin) and Sin). The multipole series represents the continuous 
spectrum and need be summed only over n rather than over n and m by virtue 
of the remarks made at the beginning of Q 5. The multipole series is added to make 
Wd behave as an outgoing progressive wave and the infinite series is needed 

w n=l 
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because each partial wave corresponding to a fixed n must satisfy the radiation 
condition. 

Upon differentiating (8.1) and (8.2) with respect to r ,  using the boundary 
condition (C) and separating the resultant equation into its real and imaginary 
parts, we obtain for the real part 

where 

Yl(P, 8,$) = cos 0 cos (psin 8 cos q5) +sin 8 cos q5 sin (/3 sin 6 cos q5). (8.4) 

The double summation is reduced to a single summation by using the ortho- 
gonal properties of the cosine. Multiply both sides of (8.7) by cos2jq5dq3 and 
integrate from Oto in. As a result of the integration the series containing LF 
vanishes leaving 

The integral on the left-hand side can be written explicitly in terms of Bessel 
functions. Finally 

( - l ) j  e-bcose [2 COB SJ,,(,8sin 8) +sin OJ2j+l(/3 sin 0) - sin 8J2+,(/3 sin S)] 

This is the first of four basic equations. In  like manner we take the imaginary part 
of boundary equation and repeat the above procedure. The final result is 

(8.7) 1 ap(2n) 
+ sJ2n)aZ L = 0. 

ar 
Here the EF series vanished. 

The two basic equations (8.6) and (8.7) are coupled by the occurrence of 8, and X, 
in each. Two more basic equations can be obtained which relate EF and Lr by 
using the cosine orthogonalization procedure with cos (2j - 1) q5. 
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We can use the orthogonalization procedure described in $6  to generate an 
infinite system of equations where the functions are 

for the equations connecting S,, S2, DP and CE; and 

(8.9) 

for the equations connecting S,, S,, EE and LP. For each value of m there exists 
an infinite equation system. 

P 
FIGURE 5. The real and imaginary parts of the complex source strength 

for the diffraction problem. 

For the purposes of this paper the main interest lies in the evaluation of the 
vertical force on the sphere due to the incident wave and not in the resultant 
diffraction pattern. This allows a considerable simplification in the analysis. The 
terms of Wd containing cos (2m - 1) q5 do not contribute to the vertical force 
because they are anti-symmetric and hence vanish when integrated over the 
surface of the sphere. The only term in cos 2mq5 which contributes to the vertical 
force is m = 0,  therefore only the m = 0 case is needed and we merely set m = 0 in 
(8.6) and (8.7). The resultant equations are similar to the equations that appeared 
in the forced heave problem. Upon carrying out the same procedure we finally 
obtain the required coefficient equations which are then truncated to 10 x 10 and 
solved by Gauss elimination. 

and 8; are shown in figure 5. Unlike 
the forced heave case, here both source strengths vanish at  /3 = 0. 

The behaviour of the source strengths 

9. Force on fixed sphere 
The vertical force on the fixed sphere is obtainable from the total potential 

( W + W d ) .  For convenience the forces due to the incident wave and diffracted 
wave are evaluated separately. 
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The force due to the incident wave potential Wi is 

s,"" (9.1) 
. F; 

2; = = i2n e-~cosBJo(psin 0)  sin 0 cos Ode. 
a P W  

The incident wave potential Wi and the vertical force 2; are &T out of phase with 

5 

FIGURE 6. The total vertical force on a fixed sphere as a function of p. 

The force on the sphere caused by the diffracted wave potential is 

where Wd is given by (8.5) and the integration is to be taken over + k s t .  It is 
simple to show that the N$:-l multipole series vanishes completely upon inte- 
gration. The 1M$z series vanishes for all values of rn except rn =: 0 while the 
multipole series degenerates to only the source term (n = 0). 

In  terms of the dimensionless force Z,d 

we have 
(9.3) 

} (9.4) 
- z,d = f l p  L2 + sg Ll + ($++/I) cp - & c; +A q - c: + . .., 

2: = sO,L,-sgL,+ (b+~/3)oO,--o;+AD~-~o~+ .... 
The Ll and L, functions have already been defined by (7.5). 

The total force on the sphere is simply 

2, = Zf+i[Z:+Z$] = IZ,Ieia. (9.5) 

Figure 6 illustrates the behaviour of the total force IZ,( as a function of /3. 
The contribution to the total force from the diffracted wave components is 

relatively small.? The total force is largest in the long-wave region (as we would 
expect) and rapidly decreases as ,8 increases. 

t In the internal report there are graphs of the various wave components. 
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10. Amplitude and phase angle in free heave 
We are now in a position to effect the synthesis of both solutions through the 

equation of motion (3.1). Substitution of (3.3) into (3.1) yields the basic equation 

Cy, e i c  = v[iZi + Z,d + i Z3  + yo[Zf+ iZ&] eic, (10.1) 

where 7; is identified as yo and C = n-(gp- 1). Upon setting C = q0/c  = relative 
heave amplitude and separating (10.1) into its real and imaginary parts, we have 

[(C-Zf)cos~-Zgsine]C = Zf, (10.2) 

[(C - Zf) sin E + Zgcos E ]  S = 2; + 22. (10.3) 

These two simultaneous equations are sufficient to determine the two unknowns 
s and S .  Eliminate 2l between these equations, obtaining a single equation in s, 

(10.4) 

Once s has been evaluated (at a specified p), it  can be put back into (10.2) or 
(10.3) and X also computed. The results of the numerical calculations are shown 
in figures 7 and 8. 

The results for the relative heave amplitude (figure 8) are similar to that of a 
driven harmonic oscillator with damping present. The amplitude starts at  unity 
for p N 0, rapidly passes to a maximum at /3 M 1.5 and then undergoes a mono- 
tonic decrease to zero as B becomes larger. Note the large value of Z at resonance. 
The variation of the phase angle (figure 7) with respect to p is also interesting. In 
the vicinity of resonance (p  M 1-5) there is a rapid change in the phase angle of n 
radians. The speed with which E changes at  resonance is indicative of the small 
value of the term proportional to the heave velocity. If s changed discontinuously, 
then the term proportional to the heave velocity would vanish. 

We can rewrite (10.1) in the following form: 

(&rp - Zf) X + iZ$ - n-X = [Zf i- i(Zt + Zf)] e-ic, (10.5) 

so that it is essentially in the form of a damped, driven harmonic oscillator 

M - + N - + R y  d2Y dY = Foee-fd. 
a t 2  dt 

(10.6) 

The second term on the left-hand side of (10.5) is imaginary and hence in phase 
with the heave velocity. Thus Zg is proportional to the damping in free heave. 
Reference to (7.6) shows that 2; is also proportional to the damping in forced 
heave. The first term of (10.5) is the term involving the mass and Zf can be 
thought of as the added mass in free heave. It is, of course, also the added mass in 
forced heave. The right-hand side of (10.4) plays the part of a forcing function 
while the third term on the left-hand side is proportional to the water-plane area 
of the sphere. 

An important result is that the added mass and damping coefficients in free 
heave are strongly frequency dependent and not even remotely constant as the 
Froude-Krylov theory postulates. In  fact one would expect the Froude-Krylov 
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theory to be approximately true in the low-frequency region since it is based upon 
plausible assumptions which at  first glance would seem to hold for this frequency 
region. This expectation is not true as the added mass and damping coefficients 
change most rapidly in this frequency region. 

O O ,  

B 

6 

0 

B 
FIGURE 7. The phase angle E aa a function FIGURE 8. The relative free heave amplitude 

of /3. 0, Computed values. C as a function of /3. 0, Computed values. 

It is important that detailed experiments for both forced and free heave be 
undertaken on the sphere with the intent of verifying or disproving the analysis 
presented. Unfortunately the author (being in an optical laboratory) is not in a 
position to carry out these experiments and hopes that someone with the proper 
facilities can undertake the necessary investigations. 

I am deeply indebted to Prof. F. Ursell for invaluable advice and discussions 
during the course of this investigation. I would also like to thank Drs R. C. 
MacCamy, J. V. Wehausen, and J. B. Keller for encouragement. 
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